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Abstract

Educational mapping is the process of analyzing an educational system to identify entities,

relationships and attributes. This paper proposes a network modeling approach to educational

mapping. Current mapping processes in education typically represent data in forms that do not

support scalable learning analytics. For example, a curriculum map is usually a table, where

relationships among curricular elements are represented implicitly in the rows of the table. The

proposed network modeling approach overcomes this limitation through explicit modeling of

these relationships in a graph structure, which in turn unlocks the ability to perform scalable

analyses on the dataset. The paper presents network models for educational use cases, with

concrete examples in curriculum mapping, accreditation mapping and concept mapping. Il-

lustrative examples demonstrate how the formal modeling approach enables visualization and

learning analytics. The analysis provides insight into learning pathways, supporting design of

adaptive learning systems. It also permits gap analysis of curriculum coverage, supporting stu-

dent advising, student degree planning and curricular design at scales ranging from an entire

institution to an individual course.

1 Introduction

Education contains a wealth of linked data whose key value lies in its connections. Existing pro-

cesses underscore the value in exploring these relationships at a variety of scales: the mapping

of prerequisite linkages across courses can identify gaps, overlaps and pathways in a curriculum

redesign [14, 2, 18], the linking of learning outcomes to educational resources is a necessary in-

gredient in designing adaptive learning systems, and the mapping of concepts in a concept map is

a valuable exercise for instructional designers [25, 13]. In evidence-based frameworks, studying

linkages within and across learning processes are critical to informing instructional methods and

changes in student knowledge [16]. By analyzing the linkages within connected data, we can move

towards learning engineering [21] and better design educational experiences [9, 18].
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Educational mapping is the process of analyzing an educational system to identify entities, re-

lationships and attributes. Current mapping processes in education (such as curriculum mapping

and concept mapping) typically represent data in forms that do not support scalable analysis. In

particular, highly-connected data are often represented in implicit forms where relationships within

the data appear as flattened attributes of the entities they link [12]. This lack of a first-class rep-

resentation results in loss of information and forces ad-hoc mechanisms to analyze connections in

the system [1]1. For example, a curriculum map is typically represented as a table, with topics or

courses (the “entities”) listed in the rows of the table. Related data such as assessments, standards

addressed, instructor, etc. are listed in the columns of the table. In this tabular representation, each

row is recognized as an entity and given a first-class representation. However, an entity’s relation-

ships are implicitly defined—flattened into column attributes of that row and thus not specified

as first-class objects in their own right. This way of representing information means that analysis

algorithms must be written in case-specific manner, requiring a potentially different analysis code

for each new dataset. While acceptable for the one-off study, this manual approach does not scale

to large or dynamic data sets, nor does it provide a structured foundation for visualization and

analytics.

In this paper, we provide a structured scalable model on which to conduct educational mapping.

We propose a network-based approach to modeling highly-connected educational data. Network

models are used in many fields to model entities and the relationships between them. Examples

include social and organizational networks [8, 10, 11, 17], biological networks [3, 20], and trans-

portation networks [4]. A primary strength of network models lies in their ability to explicitly

represent relationships as first-class objects instead of as derived properties of other objects in the

model. In the curriculum map example described above, a network model would explicitly repre-

sent as entities the topics, courses, assessments, standards, instructors, etc., and it would also ex-

plicitly represent the various relationships among these different kinds of entities. The reader could

imagine multiple tables or spreadsheets listing all of these entities and all these relationships—

while it might appear that the network model is a less compact representation than the traditional

table, in fact this expanded representation is far more flexible and scalable. In this paper, we make

the case that such a modeling approach is essential for representing, visualizing and analyzing

educational data at scale. Scalable modeling is particularly important if the promise of learning

analytics and educational analytics is to be fully unlocked [7, 24]. To motivate from concrete ex-

amples, we consider three use cases highly relevant in educational analytics—curriculum mapping,

accreditation mapping and concept mapping—and we present an approach to formally model and

analyze the corresponding data sets as a network.

2 Network models for education

In this section we first introduce some basic concepts of network modeling and graph theory. We

then present three educational network models: a curriculum mapping model, an accreditation

mapping model, and a concept mapping model. For each, we define the elements of the network

model and discuss how the tools of graph theory can provide analysis and design of educational

structures at different scales.

1For an introductory background on the notion of first-class citizenship in computer science, we refer the reader to

[22].
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nodes and edges, as many graph visualizations do. However, we find that for the purposes of

curriculum design and institutional analysis, it is more useful to visualize courses grouped into

their respective departments, because this visual arrangement reflects the organizational structure

of the institution and it also reflects the familiar structure of online course listings. Therefore, in

our visualization application, we draw nodes for only courses, and edges between nodes for only

has-prerequisite-of and has-corequisite-of relationships. Nodes are visually grouped into clusters,

driven by the existence of has-parent-of relationships. The types of entities and relationships for

the curriculum network model and its visualization can be seen in Table 1.

Table 1: Our educational network models are defined by different types of entities and relation-

ships. Each model has a tailored visualization strategy.

Model Entities Visualized nodes Relationships Visualized edges

Curriculum mapping Course

Department

Institution

Course has-parent-of

has-prerequisite-

of

has-corequisite-of

can-be

has-prerequisite-

of

has-corequisite-of

Accreditation mapping Outcome

Course

Group

Program

Outcome

Course

has-parent-of

addresses

addresses

Concept mapping Outcome

Concept

Module

Course

Concept

Outcome

has-parent-of

leads-to

addresses

leads-to

addresses

2.3 The accreditation mapping model

Accreditation mapping is the process of mapping learning evidence to accreditation outcomes in

order to show how accreditation outcomes are met. As well as supporting program evaluation,

accreditation mapping is used in curriculum redesign [15, 19].

We define an accreditation mapping network model as follows. We define four different types

of entities: Outcome, Course, Group and Program. An “outcome” here refers to an outcome

used as a criterion in an accreditation study, such as the Accreditation Board for Engineering

and Technology (ABET) student outcomes. These outcomes are typically defined by an external

accreditation agency. A “group” here refers to a way in which courses might be grouped (for

example, as “required courses,” or “elective courses,” or “capstone courses,” etc.). A “program”

refers to a program of study, typically a degree program. We then define all the individual entities

in the accreditation mapping network model: we define the individual outcomes, the individual

courses, the groups, and the program. Each one of these entities is modelled as a vertex in the

accreditation network model.
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3 Educational mapping

In this section we define and describe our process of mapping. Here, we define the mapping process

as the process of transforming an initial data set into a mapped data set consisting of entities and

relationships as described in our network models.

Table 2 shows a list of notional raw input data. The input data may come in many forms, but

often its form will be similar to that depicted in Table 2. Mapping is the process of converting

this data set into a structured form according to the mathematical network models presented in the

previous section.

Table 2: Before mapping: input data.

Id Name Type Prerequisites

entity-A Differential Equations Course

entity-B Dynamics Course entity-A

entity-C Signals and Systems Course entity-A

entity-D Feedback Control Course entity-C

entity-E Robotic Design Course entity-B, entity-D

The first step in mapping is to identify the entities of interest in the system. We step through the

data set and construct entity objects. We assign each entity a unique identifier, and attach to it its

type and other attributes. The constructed entity object may be minimally described in plain-text

JavaScript Object Notation (JSON)4 as:

1 {
2 "id": "entity-A",

3 "name": "Entity A",

4 "type": "Course"

5 }

To illustrate with a concrete example, a JSON representation of the entity in the third row of Table 2

can be:

1 {
2 "id": "entity-C",

3 "name": "Signals and Systems",

4 "type": "Course"

5 }

The second step in mapping is to construct relationship objects—we emphasize the construc-

tion of relationships as explicit objects. Current modeling formalisms flatten relationships to be

attributes of an entity, as seen in Table 2. As discussed in [1], such attribute-based modeling makes

4JSON is a platform-independent way of representing data, easy for humans to read and write. Sample open-source

data sets in JSON and Excel are available for the examples in this paper at mapping.mit.edu/network-models-for-

education
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it difficult to analyze the ontological structure of the data and requires ad-hoc mechanisms to de-

rive inferences. For example, attribute-based modeling makes it difficult to ask questions about

pathways such as, what courses are joined to other courses that are in themselves joined to other

courses via prerequisites? The explicit modeling of relationships is a key contribution of our ed-

ucational modeling work. Our graph model explicitly models relationships and entities, enabling

reusable analyses at large scale.

We create an object for every relationship that appears, and assign the relationship a unique

identifier. We also assign attributes representing the directionality, weighting, cost and other at-

tributes of each relationship. For example, a relationship object such as the prerequisite require-

ment specified in the third row of Table 2 may be minimally represented in JSON as:

1 {
2 "id": "edge-has-prerequisite-of-CA",

3 "type": "has-prerequisite-of",

4 "genus": "DIRECTED",

5 "sourceId": "entity-C"

6 "targetId": "entity-A",

7 "weight": 1

8 }

In this JSON example, the fields sourceId and targetId point to the unique identifiers of

the source and target entity objects (here the Signals and Systems course with ID entity-C has a

prerequisite of the Differential Equations course with ID entity-A). The field genus indicates

whether the relationship is directed or undirected. Additional attributes may be present, depending

on the data and application use case.

4 Results

In this section we present three case studies to demonstrate application of our network-based edu-

cational models at multiple scales: 1) curriculum mapping at the institutional level, 2) outcomes-

based accreditation at the degree program level and 3) instructional planning at the course level. In

each case, we describe the mapping process and the resulting network model. We present example

visualizations and analytics to illustrate the power of the modelling approach. Our implementation

uses a scalable decoupled architecture that enables data to be accessed by multiple independent

applications (in our case analytics and visualization) as illustrated in Figure 7.

4.1 Modeling at the institutional scale

In this example, we model the undergraduate curriculum of the Massachusetts Institute of Tech-

nology (MIT).

4.1.1 Mapping

The MIT curriculum model uses the structure specified in Table 1. From a curriculum file provided

by the MIT registrar office, we create the mapped data set consisting of entities and relationships

11





Table 4: After mapping: summary of mapped MIT curriculum data set.

Entities Count Attributes

Course 1264 Units, URL

Department 31

Institution 1

Relationships Count Attributes

has-parent-of 1295 Type, Directionality

has-prerequisite-of 941 Type, Directionality

has-corequisite-of 63 Type, Directionality

relationships visualized as directed edges between the appropriate course nodes. In the example

shown, we use node color to visualize how courses vary in unit count across the institute. A stan-

dard MIT course is 12 units (representing 12 total hours per week over a semester of length 14

calendar weeks). In Figure 8, orange nodes represent courses that are greater than 12 units—these

are typically laboratory and project-based courses. As well as laboratory and project-based courses

across the engineering and science departments, we see in Global Studies and Languages several

courses that include research projects conducted in the relevant foreign language. Blue nodes rep-

resent courses that are fewer than 12 units. Here, we see evidence of the recent curricular redesigns

of several MIT departments to include more flexibility in their undergraduate degree programs. For

example, Mechanical Engineering at MIT offers a both a traditional and a flexible degree program.

In the flexible degree program, students complete a core in mechanical engineering and combine it

with a six-course concentration in one of several modern engineering areas. In part, this flexibility

is enabled through half-semester courses (6 units) in the mechanical engineering core. The high-

lighted pathway in Figure 8 shows a full-semester course Mechanics and Materials I leading to a

half-semester course Thermodynamics, which in turn leads to another half-semester course Intro-

duction to Heat Transfer. Mechanics and Materials I is required for students in both the traditional

and the flexible mechanical engineering degree programs. The two follow-on six-unit courses are

required for the flexible degree program (whereas the traditional degree program has a different

requirement), but the offering as two half-semester courses is intended to give the students greater

scheduling flexibility to accommodate their broader degree requirements.

Another analysis of the curriculum model is of prerequisite relationships. For each course,

we find its entire prerequisite chain—i.e., the course’s prerequisites, the prerequisites of its pre-

requisites, and so on. This prerequisite chain is a subgraph within our network model. We then

compute a topological sort on the subgraph to find a valid ordering of the prerequisite pathway of

the course. Figure 9 visualizes some prerequisite pathways in a tree-like structure. In the visualiza-

tion, nodes are ranked according to the maximum length of the pathway from the source node(s)

in the subgraph to that node. Shown is a collection of prerequisite pathways with courses ordered

by increasing rank. Note that the maximum length of the pathway represents the most constraining

set of prerequisite requirements that the student must complete before they can take that course.

For example, in Figure 9(c), the course Intro to EECS I is shown in the third level of the tree-like

structure, because students must complete two levels of prerequisite classes (here Physics II and

its prerequisites) before taking Intro to EECS I. Similarly, the course Intro to Algorithms has a
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4.2.1 Mapping

The SUTD EPD program model uses the structure specified in Table 1. We obtained from SUTD

a list of program learning outcomes and courses, organized into groups according to the type of

course. In this case, the outcomes are specified by an external accreditation agency. Each course

has a list of outcomes that it addresses. The degree to which a course addresses an outcome is

indicated by a numeric weighting from one (addresses weakly) to three (addresses strongly). This

list and the weights were created by the SUTD faculty and curriculum coordinators. To create

the accreditation mapping network model, we step through the list to construct entity objects for

each outcome, course, grouping and degree program that appear. These constructed entities are

vertices in the network model and have type of Outcome, Course, Group or Program. We also

attach attributes to each entity, such as an URL for each course that directs the user to a repository

of materials for that course, including evidence that is provided to accreditors during a site visit.

The second step in the mapping process is to construct relationship objects. To do this, we make

a second pass through the list and construct a relationship object of type addresses pointing from

each course to the corresponding outcomes. These relationships are each assigned a weighting.

We construct a has-parent-of relationship object for every Course–Group, Outcome–Group, and

Group–Program relationship.

Table 5 summarizes the mapped data set and Figure 10 shows a snapshot of the resulting net-

work visualization. In our visualization application, we visualize outcomes as nodes (small red

circles) and courses as nodes (larger circles). The color of a course node indicates the number of

outcomes it addresses, with whiter nodes addressing more outcomes and darker nodes addressing

fewer outcomes. Groups are used to visually cluster outcomes and courses using has-parent-of

relationships and for suburb labels in the map. The addresses relationships are shown as arrows

pointing from a course node to an outcome node.

Table 5: After mapping: summary of the mapped SUTD EPD data set.

Entities Count Attributes

Outcome 40 Description

Course 85 Learning evidence URL

Group 7

Program 1

Relationships Count Attributes

has-parent-of 132 Type, Directionality

addresses 1559 Type, Directionality, Strength

4.2.2 Analysis

This network model provides a basis on which to conduct analysis of the program and its coverage

of accreditation outcomes. For each outcome we can analyze its coverage in the EPD program.

The indegree of an outcome vertex specifies the number of courses that address that outcome. The

weighted indegree of an outcome vertex is computed by summing up the weights of the incoming
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4.3 Modeling at the course scale

In this example we model and map a single course, Computational Methods in Aerospace Engi-

neering.

4.3.1 Mapping

The concept map model uses the structure specified in Table 1. The course has 59 learning out-

comes describing what a student is expected to be able to do after completing the course. The

instructor identified 67 concepts, highlighting what she thought to be the key topics covered in

the course. These outcomes and concepts are grouped into four modules: Integration Methods for

Ordinary Differential Equations (ODEs), Finite Difference and Finite Volume Methods for Partial

Differential Equations (PDEs), Finite Element Methods for PDEs, and Probabilistic Simulation

and Intro to Design Optimization. Within each of these modules, the concepts and outcomes are

each grouped into a sub-module. This leads to the concept map network model with a total of 139

entities as shown in Table 6.

The second step in the mapping process is to construct relationship objects. Relationships

contained in the provided course data include the relationships between concepts and outcomes;

these specify which outcomes each concept addresses. The data also contain information on the

relationships among outcomes, by specifying for each outcome a a list of its prerequisite outcomes

(i.e., the other outcomes that must be mastered in order to achieve that particular outcome).

To construct the relationship objects in the network model, we step through each concept and

identify the outcomes it addresses. For each, we construct a relationship object of type addresses

pointing from the concept to the outcome. We step through each outcome and construct a rela-

tionship object of type leads-to pointing from the outcome to any downstream outcomes for which

it is a prerequisite. We construct a has-parent-of relationship object for every Concept–Module,

Outcome–Module, and Module–Course grouping. Table 6 summarizes the mapped dataset and

Figure 15 shows a snapshot of the resulting network visualization.

Table 6: After mapping: summary of mapped dataset for course Computational Methods in

Aerospace Engineering.

Entities Count Attributes

Outcome 59

Concept 67

Module 12

Course 1

Relationships Count Attributes

has-parent-of 138 Type, Directionality

addresses 157 Type, Directionality

leads-to 50 Type, Directionality
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Table 7: Outcomes of high rank are synthesizing skills that build on earlier material in the course

Computational Methods in Aerospace Engineering.

Learning Outcome Rank Total num-

ber of

prerequisite

outcomes

Implement multi-step and multi-stage

methods to solve a representative system

of ODEs from an engineering application.

4 13

Obtain confidence intervals for sample es-

timates of the mean, variance, and event

probability.

4 9

Describe the meaning of the entries (rows

and columns) of the stiffness matrix and of

the right-hand side vector for linear prob-

lems.

4 9

data on which they are built, although in this regard scalable visualization can be a valuable way

of communicating and checking data.

For privacy reasons, this paper has avoided any examples that use actual student data; how-

ever, clearly the presented models provide a structured foundation that, in concert with student

data, could enable data-driven advising, adaptive learning, personalized learning and data-driven

institutional resource allocation.
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